Home About us Current issue Back issues Submission Instructions Advertise Contact Login   

Search Article 
  
Advanced search 
 
Saudi Journal of Kidney Diseases and Transplantation
Users online: 45 Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size 
 


 
ORIGINAL ARTICLE Table of Contents   
Year : 2002  |  Volume : 13  |  Issue : 2  |  Page : 141-145
The Significance of Extreme Elevation of the Erythrocyte Sedimentation Rate in Hemodialysis Patients


Department of Medicine (Nephrology Division), College of Medicine, King Khalid University, Abha, Saudi Arabia

Click here for correspondence address and email
 

   Abstract 

We conducted this study to determine the prevalence of elevated erythrocyte sedimentation rate (ESR) in chronic hemodialysis patients and to evaluate the dialytic and serum factors that might explain this elevation. ESR was measured using the Westergren method immediately before and immediately after dialysis sessions in 200 stable (i.e. with no other obvious systemic illnesses) hemodialysis patients and in 50 hemodialysis patients during concurrent acute illnesses. ESR was found to be > 25 mm/h in 180 (90%) patients, >50 mm/h in 76 (38%) and > 100 mm/h in 64(32%) patients. The mean pre dialysis ESR was not significantly different from the mean post dialysis ESR (77 ± 38 Vs 78 ± 35 mm/h, respectively). The mean ESR in the 50 patients during acute illnesses was not significantly different from the mean ESR measured during the stable state. Among all dialytic, biochemical and serum factors that were studied in this population, fibrinogen was the only factor that independently correlated significantly with ESR (P=0.015). In conclusion, this study showed that our dialysis patients had a tendency for elevated ESR and almost one third of them (32%) had ESR >100 in the absence of malignancy or other clinical factors known to cause such levels. There was a significant correlation between elevated ESR and fibrinogen level. Thus, an ESR of > 100 does not necessarily warrant extensive investigations for causes other than the renal failure/hemodialysis state unless other indicators exist to justify the search.

Keywords: Dialysis, Erythrocyte sedimentation, Fibrinogen

How to cite this article:
Al-Homrany M. The Significance of Extreme Elevation of the Erythrocyte Sedimentation Rate in Hemodialysis Patients. Saudi J Kidney Dis Transpl 2002;13:141-5

How to cite this URL:
Al-Homrany M. The Significance of Extreme Elevation of the Erythrocyte Sedimentation Rate in Hemodialysis Patients. Saudi J Kidney Dis Transpl [serial online] 2002 [cited 2014 Apr 16];13:141-5. Available from: http://www.sjkdt.org/text.asp?2002/13/2/141/33125

   Introduction Top


Since 1921, when Fahraeus first described the accelerated rate of erythrocyte sedimen­tation in pregnant women, this simple test has served as a nonspecific indicator of the presence of disease. [1] It also has been found useful in monitoring response to therapy, especially in rheumatologic diseases. Although the erythrocyte sedimentation rate (ESR) is a nonspecific test, there is a general impression that markedly elevated ESRs may have greater diagnostic specificity. Indeed, since Zacharski and Kyle [2] reported from the Mayo Clinic that 58% of the patients with ESR of over 100 mm/hr had underlying malignant disease, many physicians have felt obliged to undertake extensive diagnostic evaluation in patients found to have extremely high ESR. Extreme elevation (≥100 mm/hr) was found in several conditions including malignancies, infection and collagen vascular diseases. [3]

The value of measuring ESR in renal patients is not clear in the literature and early reports suggested that 1-17% of the patients with extremely elevated ESR (>100 mm/hr) had renal diseases of varying etiologies. [2],[3],[4] Such data on the dialysis population are scanty and inconclusive. [5],[6] We conducted this study to evaluate the range of elevated ESR in stable hemodialysis patients who do not have underlying diseases that may elevate the ESR, to study the effect of hemodialysis on the ESR, to detect factors that may contribute to the elevated ESR and to study the effect of acute illnesses on the baseline ESR in dialysis patients.


   Material and Methods Top


We selected consecutive regular hemo­dialysis patients attending the outpatient dialysis center in Abha, Saudi Arabia, from March 1999 to December 1999 were selected.

Patients with conditions that are known to influence the measurement of ESR were excluded, such as acute or chronic infection, malignancy, connective tissue diseases, history of recent surgery, pregnancy and drugs: In particular the drugs excluded were non-steroidal anti-inflammatory drugs, aspirin and antihistamines.

The ESR was measured both immediately before and immediately after dialysis sessions. Six months later, the ESR was repeated in all available patients receiving dialysis to determine variability over time. ESR was also measured in 50 such patients who developed acute illnesses and required hospitalization for diseases such as: tuber­culosis, pneumonia, sepsis etc.

Demographic and biochemical data included age, gender, duration of dialysis, cause of renal failure, frequency of dialysis, heparin dose, hepatitis status and weight gain between dialysis treatments. Routine blood investigations included serum sodium, potassium, blood urea nitrogen (BUN), creatinine, alkaline phosphatase, calcium, phosphorus, total protein, albumin, hemo­globin, hematocrit, bicarbonate, parathyroid hormone (PTH), serum ferritin, fibrinogen level, serum immunoglobulins and serum protein electrophoresis.

All patients were dialyzed three times per week using a C10 cuprophan dialyzer. ESR was measured using modified Westergren method. Blood was collected undiluted in an EDTA tube and transferred to standard 20 cm Westergren tube within two hours of being drawn. Blood was allowed to settle at room temperature in a vertical column and one reading was obtained after one hour. Elevated ESR was defined as ESR ?25 mm/h.


   Statistical analysis Top


Data were analyzed using SPSS software. Data presented here are expressed as the mean ± SE. Differences in the mean ESRs between identical patient groups at different times were analyzed by Wilkinson's test.

Correlation between the ESR and categorical values was assessed by using the "t" and one-way ANOVA tests. Spearman's test was used to assess the correlation between the ESR and continuous variables. Multiple regression analysis was used to relate the ESR to the variables showing significant correlation with spearman's test. Statistical significance was set as P values of <0.05.


   Results Top


A total of 200 patients were studied; 104 (52%) males and 96 (48%) females with a mean age of 49.8 ± 17.1 years (range 13 to 90 years). The mean duration on dialysis was 26 ± 5 month (range 3-130 months). Causes of end-stage renal disease (ESRD) are shown in [Table - 1]. Chronic glomerulonephritis was diagnosed in 108 (54%) patients followed by "unknown etiology" in 48 (24%) patients.

Laboratory characteristics of the study population include: BUN was 72 ± 22.1 mmol/L (range 25 to 149 mmol/L), serum creatinine 1062 ± 339 µmol/L (range 587 to 1875 µmol/L), hemoglobin 89 ± 20 g/L (range 58-135 g/L), hematocrit 26.4% ± 6% (range 17% to 40%), calcium 2.25 ± 0.37 mmol/L (range 1.5 to 3.37 mmol/L), Sodium 135 ± 6.8 mmol/l (range 119 to 152 mmol/l), potassium 4.9 ± .9 mmol/l (range 3.2-7.8 mmol/l) Phosphorus 2.1 ± 0.76 mmol/L (range 0.56 to 4.0 mmol/L), total protein 73 ± 09 g/L (range 54-96 g/L), albumin 36 ± 5.0 g/L (range 23 to 44 g/L), PH 7.2 ± 0.1 (range 7 to 7.6), bicarbonate 15 ± 5 mmol/l (range 4­33 mmol/l), PTH 451 ± 528 pg/ml (range 13.5-2000 pg/ml), alkaline phosphatase 353 ± 272 IU/L (range 48-130 IU/L). ESR was measured immediately before and after dialysis treatment. The mean predialysis ESR was 77 ± 38 mm/h and was not significantly different from the mean postdialysis ESR of 78 ± 35 mm/h. [Table - 2] shows the distribution of ESR levels. It is noteworthy that the ESR was >_100 mm/h in 64 (32%) patients. These patients did not have malignancy or any of the other clinical factors known to cause such elevations of the ESR. In the 50 patients with acute illnesses, the ESR was measured during illness-state and the mean ESR was not significantly different from that measured during the stable state. Factors that showed significant correlation with the ESR were: total serum protein (P=0.001), α1-globulin (P=0.012), fibrinogen (P=0.018), γ-globulin (P=0.008) and immunoglobulin-M (P=0.039). There was no correlation between the ESR and age, gender, causes of renal disease, hemoglobin, hematocrit, duration of dialysis, albumin, calcium, phosphorus, BUN, crea­tinine, PTH and bicarbonate. However, on multiple regression analysis, out of the five significant factors shown above, fibrinogen was the only factor that independently correlated significantly with the ESR [Table - 3], [Figure - 1].


   Discussion Top


Alteration in the sedimentation rate has been attributed to both plasma and red blood cell factors. [6] The ESR is directly proportional to the mass of the erythrocytes and inversely proportional to the surface area, which carries the negative charge that prevents aggregation. Large cells have a small surface­to-volume ratio and less charge in relation to their mass than microcytes. Thus, macrocytes sediment more rapidly than normal cells while microcytes sediment more slowly. [7] Since erythrocyte aggregation is caused by electrostatic forces, [8] these cells normally have a net negative charge and repel each other. Many plasma proteins including fibrinogen are positively charged and neutralize the surface charge of erythrocytes, thereby reducing the repulsive forces and promoting aggregation (rouleaux formation). [8]

Some plasma proteins are known as acute phase reactants and facilitate erythrocyte aggregation. [8] These proteins include fibri­nogen, β-globulin, ∞1-globulin, γ-globulin and albumin. Age, sex, anemia and some drugs (such as salicylates, anti-inflammatory drugs, anti-histamines) are known factors that affect sedimentation in non-uremic individuals. [7],[8]

In uremic patients the mechanism of the elevated ESR was not fully explained and multiple factors such as: age, hemoglobin level, hypocalcemia and elevated fibrinogen are probably involved. [5],[6] Our findings confirmed the earlier reports that most stable dialysis patients have significant acceleration of ESR (90%).[ 5],[6] Among all factors that are known to influence the acceleration, fibrinogen was the only factor in our study that correlated significantly and independently, with the ESR. Indeed, the quantity and the activity of fibrinogen was shown to be significantly elevated in uremic patients when compared with the healthy controls. [9]

Although the majority of our patients were anemic, our results failed to show any correlation between the ESR and anemia. There is no clear explanation for such a finding; however, it is possible that the effect of hemoglobin is weaker than fibrinogen. In addition, the size of erythrocytes in renal failure patients is typically normocytic.

Furthermore, the present report in contrast to previous studies [5],[6] did not show any significant correlation between the elevated ESR and age or gender of the patients. The possible correlation of the elevated ESR in dialysis patients with the chronic inflam­matory response to the bioincompatible membranes need to be further confirmed in patients using more biocompatible dialyzers or in patients using peritoneal dialysis as a renal replacement therapy.

In conclusion, this study showed that our dialysis patients had a general tendency for elevated ESR (>25 in 90% of patients) and almost one third of them (32%) had ESR >100 in the absence of malignancy or other clinical factors known to cause such levels. There was a significant correlation between elevated ESR and fibrinogen level. Thus, an ESR of ≥100 does not necessarily warrant extensive investigations for causes other than the renal failure/hemodialysis state unless other indicators exist to justify the search.


   Acknowledgement Top


I would like to thank Prof. Abulfotoh and Prof. Ahmed for reviewing the manuscript and helping in the statistical analysis. Also I appreciate the Secretarial assistance of Mr. Syed Rashid Sami.

 
   References Top

1.Fahraeus R. The suspension-stability of the blood. Acta Med Scand 1921;55:70-92.  Back to cited text no. 1    
2.Zacharski LR, Kyle RA. Significance of extreme elevation of erythorycyte sedimentation rate. JAMA 1967;202:264-6.  Back to cited text no. 2  [PUBMED]  
3.Wyler DJ. Diagnostic implications of markedly elevated erythrocyte sedimentation rate: a re­evaluation. South Med J 1977;70:1428-30.  Back to cited text no. 3  [PUBMED]  
4.Kirkeby A, Leren P. Significance of greatly elevated sedimentation reaction. Nord Med 1952;48:1193-5.  Back to cited text no. 4    
5.Bathon J, Graves J, Jens P, Hamrick R, Mayes M. The erythrocyte sedimentation rate in end­stage renal failure. Am J Kidney Dis 1987;10:34­40.  Back to cited text no. 5  [PUBMED]  
6.Shusterman N, Kimmel PL, Kiechle FL, et al. Factors influencing erythrocyte sedimentation in patients with chronic renal failure. Arch Intern Med 1985;145:1796-9.  Back to cited text no. 6  [PUBMED]  
7.Sox HC, Liang MH. The erythrocyte sedimen­tation rate. Guidelines for rational use. Ann Intern Med 1986;104:515-23.  Back to cited text no. 7    
8.Rovel A, H'Huillier JF, Vigneron C. Mecha­nisms of erythrocyte sedimentation. Biomedi­cine 1978;28:248-55.  Back to cited text no. 8    
9.Panicucci F, Sagripanti A, Pinori E, et al. Comprehensive study of haemostasis in chronic uraemia. Nephron 1983;33:5-8.  Back to cited text no. 9  [PUBMED]  

Top
Correspondence Address:
Mohammed Al-Homrany
Department of Medicine (Nephrology Division), College of Medicine & Allied Sciences, King Khalid University, P.O. Box 641, Abha
Saudi Arabia
Login to access the Email id


PMID: 17660652

Get Permissions



    Figures

  [Figure - 1]
 
 
    Tables

  [Table - 1], [Table - 2], [Table - 3]



 

Top
 
 
    Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  
 


 
    Abstract
    Introduction
    Material and Methods
    Statistical analysis
    Results
    Discussion
    Acknowledgement
    References
    Article Figures
    Article Tables
 

 Article Access Statistics
    Viewed16439    
    Printed135    
    Emailed0    
    PDF Downloaded547    
    Comments [Add]    

Recommend this journal