Home About us Current issue Back issues Submission Instructions Advertise Contact Login   

Search Article 
  
Advanced search 
 
Saudi Journal of Kidney Diseases and Transplantation
Users online: 3406 Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size 
 

ARTICLES Table of Contents   
Year : 2004  |  Volume : 15  |  Issue : 3  |  Page : 333-337
Percutaneous Transluminal Angioplasty of Failing Hemodialysis Grafts and Fistulae


Department of Internal Medicine, Rijnmond-Zuid Medical Center, Rotterdam, The Netherlands

Click here for correspondence address and email
 

Keywords: Vascular access, Hemodialysis, Percutaneous, Stenosis.

How to cite this article:
van der Linden J, van den Dorpel MA. Percutaneous Transluminal Angioplasty of Failing Hemodialysis Grafts and Fistulae. Saudi J Kidney Dis Transpl 2004;15:333-7

How to cite this URL:
van der Linden J, van den Dorpel MA. Percutaneous Transluminal Angioplasty of Failing Hemodialysis Grafts and Fistulae. Saudi J Kidney Dis Transpl [serial online] 2004 [cited 2020 Aug 3];15:333-7. Available from: http://www.sjkdt.org/text.asp?2004/15/3/333/32982

   Introduction Top


Vascular access complications represent an ongoing contributor to patients' morbidity and even mortality. [1],[2] In the United States, access complications cost close to $1 billion a year, and are responsible for 17-30% of all hospitali­zations in dialysis patients. [3],[4],[5] Thrombosis is the leading cause among vascular access complications. It is almost always associated with the presence of stenosis, which is often located at, or close to, the venous anastomosis. Nowadays, percutaneous transluminal angio­plasty (PTA) is considered a safe and effective treatment of stenotic lesions. [6] Routine survei­llance programs for the early detection of stenoses are advocated by both American and European DOQI guidelines. If these are put into practice and combined with elective angioplasty, they have been shown to substan­tially reduce the number of thromboses per patient year. [7],[8],[9],[10] Also, the use of catheters, the duration of hospitalization, the number of missed dialysis treatments and even the total cost of treatment of thrombosis-related events for grafts can be substantially reduced by aggressive access surveillance. [11]

Based on the vast experience reported in the literature, the NKF-K/DOQI taskforce has suggested PTA as one of the preferred treat­ments for vascular access stenosis. [6] Compared with surgery, PTA has several advantages. PTA is an outpatient procedure, which preserves access sites and guarantees use of the access for dialysis immediately after the treatment. Also, even centrally located stenoses are acce­ssible with PTA. This review will highlight the angioplastic findings and possibilities and reviews the results and complications of this technique.


   Localization of Stenoses Top


In arterio-venous grafts (AVG), most throm­botic events result from one or more progre­ssive stenoses in the venous outflow tract, typically at the venous anastomosis.[9],[12],[13],[14] These stenoses are caused by intimal and fibromuscular hyperplasia, which may be induced by turbulent flow, increased shear stress and other factors. [15],[16] Any obstruction of the outflow from the graft will result in an increase in venous pressure in the dialysis circuit with an accompanying decrease in blood flow. [17] Stenoses in arterio-venous fistula (AVF) tend to occur more centrally at vein bifurcations and venous valves, rather than close to the venous outlet. Stenoses in AVF frequently result in development of collateral veins draining the AVF. As a result, a venous stenosis will cause a reduction in blood flow but often without the increase in venous pre­ssure. Arterial inflow stenoses account for less than five percent of lesions in accesses. [17] According to NKF-K/DOQI guidelines, ste­notic lesions of 50% or more, associated with clinical or physiological abnormalities, should be treated. [6]


   Evaluation of the Effect of PTA Top


K/DOQI recommends a residual stenosis of less than 30% after PTA. However, several studies have shown that the angiographic result of PTA is poorly related to its subsequent patency. [12],[18],[19],[20],[21] We found that the access flow prior to PTA, and the initial improvement in access flow after PTA were strong predictors of the decline in access flow after PTA. [22] Furthermore, the likelihood of access thrombo­sis is about 80% if angioplasty fails to improve access flow by at least 20%. [23] Recently, the SCVIR Technology Assessment Committee recommended that PTA success should be expressed in both angiographic and functional parameters. [24] A successful PTA procedure should lead to an increase in access flow of 250-300 mL/min. [22],[23],[25] The percentage of PTA procedures resulting in an access flow less than the threshold value of 600 mL/min, was 34% in AVG and 50% in AVF. Schwab et al defined failure of PTA as an increase in access flow of less than 20%, which occurred in 21% of grafts. [23] This lack of effect in a minority of patients may be caused by rapid recoil of the stenotic lesion, occurring in the period between PTA and the first access flow measurement. Intravascular ultrasound after PTA showed that immediate elastic recoil occurred in 50% of the stenotic lesions. [26] Access flow measurements, during or immedia­tely after PTA, made in the intervention room, could be helpful to optimize procedure results.


   Patency Rates of PTA Top


Numerous reports have demonstrated that PTA effectively improves access function. However, comparing patency rates is difficult because of differences in patient selection, access types and definitions of efficiency of the PTA procedure. Initial success rates of PTA, i.e. post-PTA rest-stenosis less than 30%, range from 80 to 94%. [12],[18],[19],[27] The highest rate of technical failure is associated with central lesions. [18] Primary patency rates at six months after PTA range from 43 to 77%, again with poorest long-term success in central lesions (ranging from nearly 25% to 42% at 6 months). [9],[12],[18],[19],[27],[28]

Only one controlled surveillance study eva­luated PTA results in AVF. [25] With a six­month patency of more than 95%, PTA seems to be more successful in AVF than in AVG. Also, the mean time interval to re-PTA is longer for AVF than AVG (169 vs. 109 days), indicating a slower development of re-stenosis in AVF. [22] Recently, Beathard et al reported on the beneficial effect of PTA in AVF that failed to mature. [29] Angioplasty was performed to treat venous and arterial stenoses with a success rate of nearly 100%. In the great majority of AVF, hemodialysis could be initiated. The long-term effect of these early angioplastic corrections on AVF maturation still needs to be elucidated.

Results of PTA after vascular access throm­bosis are generally worse, with a reported six-month patency rate of only 19% in one study including AVG only. [30] This finding suggests that the outcome of PTA of less severe stenoses is superior to the outcome of PTA of more severe stenoses that lead to thrombosis, emphasizing the importance of effective surveillance of access stenosis and pre-emptive PTA. Primary patency after surgical thrombectomy seems slightly better, but remains disappointing. [31],[32],[33] Dougherty et al stressed the fact that endovascular treat­ment is more expensive because of frequent secondary surgery after technical failure. [32] However, it is important to keep in mind that surgical thrombectomy is followed by recon­struction of the anastomosis in most cases. As a consequence, after several surgical revisions a new anastomosis often can no longer be created. Of course, the creation of a new access also results in extra costs and morbidity.

PTA results in substantial vascular injury, which may trigger development of restenosis. However, several authors found similar success rates after first, second or third PTA. [18],[22] Still, the use of cutting balloons instead of circular dilatation balloons resulted in less intimal proliferation in an animal model, indicating less traumatic injury after cutting balloon angioplasty. [34] Uncontrolled data in hemodialysis patients indicate that this device may be useful in clinical practice [35] ,although no randomized studies comparing both balloon types in access stenosis have been published so far.


   Complications of PTA Top


With a clinically significant morbidity rate of less than five percent, PTA can be consi­dered a safe procedure. The most common complications are vein rupture at the angio­plasty site, acute access thrombosis and pseudoaneurysm formation. If possible, self­ expanding stents are used to treat vein ruptures, otherwise surgical intervention is needed. Other reported complications include puncture site bleeding, bacteremia and allergic reactions to contrast medium.


   Use of Self-Expanding Stents Top


The majority of trials reporting optimistic results of using self-expanding stents to treat venous stenoses are uncontrolled or retrospe­ctive. In a prospective randomized controlled trial, 87 patients with significant stenotic lesions were randomized to treatment with PTA or PTA and stent placement. [36] The six­month primary patency rate of peripheral venous stenoses was 31% in the PTA group and 27% in the PTA and stent group. Also, stent placement in central venous stenoses did not result in better patency rates. However, the number of central venous lesions was small in this study. [36] Another prospective randomized trial was conducted by Beathard et al. [37] Again, no benefit could be demon­strated of the use of a stent as an adjunct to PTA for anastomotic lesions in AVG. [37] Overall, additive placement of self-expanding stents should be considered only in a selected group of patients, with central-elastic-lesions not responsive to PTA, or recurrence within three months after successful PTA, and patients with vein rupture after PTA. Lesions that cannot be dilated with angioplasty should not be treated with stent placement. [6]


   Conclusions Top


PTA is an effective and safe outpatient procedure in the treatment of hemodialysis access stenoses, and it can be repeated several times. When access thrombosis has occurred, surgical thrombectomy seems to have slightly better results. However, radio­logical thrombolysis has the advantage of angiographic imaging afterwards and immediate treatment of the underlying stenosis by angioplasty. Also, in contrast with surgical thrombectomy, the radiological approach makes revision of the anastomosis unnecessary, thereby preserving the access. Besides further fine-tuning of vascular access surveillance strategies, future studies should also be aimed at the further development of less traumatic angioplasty techniques, like cutting balloons. Foremost, the use of pharmacological inhibition of stenosis formation and recurrence after PTA, for instance with local drug delivery systems or gene therapy should be vigorously explored.

 
   References Top

1.Powe NR, Jaar B, Furth SL, Hermann J, Briggs W. Septicaemia in dialysis patients: incidence, risk factors and prognosis. Kidney Int 1999;55:1081-90.  Back to cited text no. 1  [PUBMED]  [FULLTEXT]
2.Schwab SJ, Beathard G. The hemodialysis catheter conundrum: hate living with them, but can't live without them. Kidney Int 1999;56:1-17.  Back to cited text no. 2  [PUBMED]  [FULLTEXT]
3.U.S. Renal Data System. The economic cost of ESRD, vascular access procedures, and Medicare spending for alternative modalities of treatment. Am J Kidney Dis 1997;30 (Suppl.1):S160-S177.  Back to cited text no. 3    
4.Feldman HI, Kobrin S, Wasserstein A. Hemodialysis vascular access morbidity. J Am Soc Nephrol 1996;7:523-35.  Back to cited text no. 4  [PUBMED]  
5.Chazan JA, London MR, Pono L. The impact of diagnosis-related groups on the cost of hospitalisation for end-stage renal disease patients at Rhode Island Hospital from 1987 to 1990. Am J Kidney Dis 1992; 19:523-5.  Back to cited text no. 5  [PUBMED]  
6.III NKF-K/DOQI clinical practice guide­lines for vascular access update 2000. Am J Kidney Dis 2001;37 (Suppl 1):S137-81.  Back to cited text no. 6    
7.Schwab SJ, Raymond JR, Saeed M, Newman GE, Dennis PA, Bollinger RR. Prevention of hemodialysis fistula thrombosis. Early detection of venous stenoses. Kidney Int 1989;36:707-11.  Back to cited text no. 7    
8.Besarab A, Sullivan KL, Ross RP, Moritz MJ. Utility of intra-access pressure monitoring in detecting and correcting venous outlet stenoses prior to thrombosis. Kidney Int 1995;47:1364-73.  Back to cited text no. 8  [PUBMED]  
9.Safa AA, Valji K, Roberts AC, Ziegler TW, Hye RJ, Oglevie SB. Detection and treat­ment of dysfunctional hemodialysis access grafts: effect of a surveillance program on graft patency and the incidence of throm­bosis. Radiology 1996;199:653-7.  Back to cited text no. 9  [PUBMED]  
10.Smits JH, van der Linden J, Hagen EC, et al. Graft surveillance: venous pressure, access flow, or the combination? Kidney Int 2001; 59:1551-8.  Back to cited text no. 10  [PUBMED]  [FULLTEXT]
11.McCarley P, Wingard RL, Shyr Y, Pettus W, Hakim RM, Ikizler TA. Vascular access blood flow monitoring reduces access morbidity and costs. Kidney Int 2001;60:1164-72.  Back to cited text no. 11  [PUBMED]  [FULLTEXT]
12.Kanterman RY, Vesely TM, Pilgram TK, Guy BW, Windus DW, Picus D. Dialysis access grafts: anatomic location of venous stenosis and results of angioplasty. Radiology 1995;195:135-9.  Back to cited text no. 12  [PUBMED]  
13.Roberts AB, Kahn MB, Bradford S, et al. Graft surveillance and angioplasty prolongs dialysis graft patency. J Am Coll Surg 1996;183:486-92.  Back to cited text no. 13  [PUBMED]  
14.Beathard GA. Thrombolysis versus surgery for the treatment of thrombosed dialysis access grafts. J Am Soc Nephrol 1995; 6:1619-24.  Back to cited text no. 14  [PUBMED]  
15.Swedberg SH, Brown BG, Sigley R, Wight TN, Gordon D, Nicholls SC. Intimal fibromus­cular hyperplasia at the venous anastomosis of PTFE grafts in hemodialysis patients. Clinical, immunocytochemical, light and electron microscopic assessment. Circulation 1989;80:1726-36.  Back to cited text no. 15    
16.Hofstra L. Intimal hyperplasia in human vascular grafts. A study in peripheral bypasses and arteriovenous fistulas. Thesis Rijksuniversiteit Limburg Maastricht 1995, ISBN 90-5278-190-7.  Back to cited text no. 16    
17.Sullivan KL, Besarab A, Bonn J, Shapiro MJ, Gardiner GA Jr, Moritz MJ. Hemodynamics of failing dialysis grafts. Radiology 1993; 186:867-72.  Back to cited text no. 17    
18.Beathard GA. Percutaneous transvenous angioplasty in the treatment of vascular access stenosis. Kidney Int 1992;42:1390-7.  Back to cited text no. 18  [PUBMED]  
19.Lumsden AB, MacDonald MJ, Kikeri D, Cotsonis GA, Harker LA, Martin LG. Prophylactic balloon angioplasty fails to prolong the patency of expanded polytetra­fluoroethylene arteriovenous grafts: results of a prospective randomized study. J Vasc Surg 1997;26:382-90.  Back to cited text no. 19  [PUBMED]  [FULLTEXT]
20.Martin LG, MacDonald MJ, Kikeri D, Cotsonis GA, Harker LA, Lumsden AB. Prophylactic angioplasty reduces thrombosis in virgin ePTFE arteriovenous dialysis grafts with greater than 50% stenosis: subset analysis of a prospectively randomized study. J Vasc Interv Radiol. 1999;10:389-96.  Back to cited text no. 20    
21.Ahya SN, Windus DW, Vesely TM, Latti­more BA. Utility of radiologic criteria for predicting access flow after percutaneous transluminal angioplasty [Abstract]. J Am Soc Nephrol 1999;10 (ASN Program and Abstracts): 200A.  Back to cited text no. 21    
22.Van der Linden J, Smits JH, Assink JH, et al. Short- and long-term functional effects of percutaneous transluminal angioplasty in hemodialysis vascular access. J Am Soc Nephrol 2002;13:715-20.  Back to cited text no. 22  [PUBMED]  [FULLTEXT]
23.Schwab SJ, Oliver MJ, Suhocki P, McCann R. Hemodialysis arteriovenous access: detection of stenosis and response to treat­ment by vascular access blood flow. Kidney Int 2001;59:358-62.  Back to cited text no. 23  [PUBMED]  [FULLTEXT]
24.Gray RJ, Sacks D, Martin LG, Trerotola SO. Reporting standards for percutaneous inter­ventions in dialysis access. Technology Assessment Committee. J Vasc Interv Radiol 1999;10:1405-15.  Back to cited text no. 24    
25.Tessitore N, Mansueto G, Bedogna V, et al. A prospective controlled trial on effect of percutaneous transluminal angioplasty on functioning arteriovenous fistulae survival. J Am Soc Nephrol 2003;14:1623-7.  Back to cited text no. 25  [PUBMED]  [FULLTEXT]
26.Davidson CJ, Newman GE, Sheikh KH, Kisslo K, Stack RS, Schwab SJ. Mecha­nisms of angioplasty in hemodialysis fistula stenoses evaluated by intravascular ultrasound. Kidney Int 1991;40:91-5.  Back to cited text no. 26  [PUBMED]  
27.Saeed M, Newman GE, McCann RL, Sussman SK, Braun SD, Dunnick ND. Steno­ses in dialysis fistulas: treatment with percuta­nous angioplasty. Radiology 1987;164:693-7.  Back to cited text no. 27    
28.Lay JP, Ashleigh RJ, Tranconi L, Ackrill P, Al-Khaffaf H. Result of angioplasty of Brescio­Cimino haemodialysis fistulae: medium-term follow-up. Clinical Radiology 1998;53:608-11.  Back to cited text no. 28  [PUBMED]  
29.Beathard GA, Arnold P, Jackson J, et al. Aggressive treatment of early fistula failure. Kidney Int 2003;64:1487-94.  Back to cited text no. 29  [PUBMED]  [FULLTEXT]
30.Lilly RZ, Carlton D, Barker J, et al. Predictors of arteriovenous graft patency after radiologic intervention in hemodialysis patients. Am J Kidney Dis 2001;37:945-53.  Back to cited text no. 30  [PUBMED]  
31.Marston WA, Criado E, Jaques PF, Mauro MA, Burnham SJ, Keagy BA. Prospective rando­mized comparison of surgical versus endovas­cular management of thrombosed dialysis access grafts. J Vasc Surg 1997; 26:373-80.  Back to cited text no. 31  [PUBMED]  [FULLTEXT]
32.Dougherty MJ, Calligaro KD, Schindler N, Raviola CA, Ntoso A. Endovascular versus surgical treatment for thrombosed hemo­dialysis grafts: a prospective randomized study. J Vasc Surg 1999;30:1016-23.  Back to cited text no. 32  [PUBMED]  [FULLTEXT]
33.Vesely TM, Williams D, Weiss M, et al. Comparison of the angiojet rheolytic catheter to surgical thrombectomy for the treatment of thrombosed hemodialysis grafts. Peripheral AngioJet Clinical Trial. J Vasc Interv Radiol 1999;10:1195-205.  Back to cited text no. 33    
34.Barath P, Fishbein MC, Vari S, Forrester JS. Cutting balloon: a novel approach to percutaneous angioplasty. Am J Cardiol 1991;68:1249-52.  Back to cited text no. 34  [PUBMED]  [FULLTEXT]
35.Vorwerk D, Adam G, Muller-Leisse C, Guenther RW. Hemodialysis fistulas and grafts: use of cutting balloons to dilate venous stenoses. Radiology 1996;201:864-7.  Back to cited text no. 35    
36.Quinn SF, Schuman ES, Demlow TA, et al. Percutaneous transluminal angioplasty versus endovascular stent placement in the treatment of venous stenoses in patients undergoing hemodialysis: intermediate results. J Vasc Interv Radiol 1995;6:851-5.  Back to cited text no. 36  [PUBMED]  
37.Beathard GA. Gianturco self-expanding stent in the treatment of stenosis in dialysis access grafts. Kidney Int 1993;43:872-7.  Back to cited text no. 37  [PUBMED]  

Top
Correspondence Address:
Joke van der Linden
Department of Internal Medicine, Rijnmond-Zuid Medical Center, Location Clara, Olympiaweg 350, 3078 HT, Rotterdam, The Netherlands

Login to access the Email id


PMID: 18202483

Rights and Permissions




 

Top
 
 
    Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  
 


 
    Introduction
    Localization of ...
    Evaluation of th...
    Patency Rates of PTA
    Complications of PTA
    Use of Self-Expa...
    Conclusions
    References
 

 Article Access Statistics
    Viewed2979    
    Printed40    
    Emailed0    
    PDF Downloaded299    
    Comments [Add]    

Recommend this journal