Home About us Current issue Back issues Submission Instructions Advertise Contact Login   

Search Article 
  
Advanced search 
 
Saudi Journal of Kidney Diseases and Transplantation
Users online: 2435 Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size 


 
ORIGINAL ARTICLE Table of Contents   
Year : 2018  |  Volume : 29  |  Issue : 4  |  Page : 872-878
The impact of blood flow rate on dialysis dose and phosphate removal in hemodialysis patients


1 Department of Nephrology, Dialysis and Renal Transplantation, Faculty of Medicine, Mohammed V Military Hospital, Mohammed V, Souissi University, Rabat; Department of Nephrology and Dialysis, 5th Military Hospital, Guelmim, Morocco
2 Department of Nephrology and Dialysis, 5th Military Hospital, Guelmim; Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fes, Morocco
3 Department of Nephrology, Dialysis and Renal Transplantation, Faculty of Medicine, Mohammed V Military Hospital, Mohammed V, Souissi University, Rabat, Morocco

Correspondence Address:
Dr. Hicham Rafik
Department of Nephrology, Dialysis and Renal Transplantation, Mohammed V Military Hospital, Faculty of Medicine, Mohammed V-Souissi University, Rabat
Morocco
Login to access the Email id


DOI: 10.4103/1319-2442.239654

PMID: 30152424

Rights and Permissions

The inadequacy of dialysis and hyperphosphatemia are both associated with morbidity and mortality in chronic hemodialysis (HD) patients. Blood flow rate (BFR) during HD is one of the important determinants of increasing dialysis dose. The aim of this study was to determine the effect of increasing BFR on dialysis dose and phosphate removal. Forty-four patients were included in a cross-sectional study. Each patient received six consecutive dialysis sessions as follows: three consecutive sessions with a BFR of 250 mL/min, followed by three others with BFR of 350 mL/min without changing the other dialysis parameters. Patients' body weight was recorded, and blood samples (serum urea and phosphate) were collected before and after each dialysis session. For assessing the efficacy of dialysis, urea reduction ratio (URR), Kt/VDiascan (Kt by Diascan and V by Watson), Kt/V Daugirdas (Daugirdas 2nd generation), equilibrated Kt/V, and phosphate reduction rate (PRR) were used. The increase of BFR by 100 mL/min resulted in a significant increase of URR, Kt/V Diascan, Kt/VDaugirdas, equilibrated Kt/V, and PRR: URR; 75.41 ± 5.60; 83.51 ± 6.12; P <0.001), (Kt/VDiascan; 1.28 ± 0.25; 1.55 ± 0.15; P <0.001), (Kt/VDaugirdas; 1.55 ± 0.26; 2.10 ± 0.61; P = 0.001), equilibrated Kt/V; 1.40 ± 0.19; 1.91 ± 0.52; P = 0.001), and (PRR; 50.32 ± 12.22; 63.66 ± 13.10; P = 0.010). Adequate dialysis, defined by single-pool Kt/V ≥1.4, was achieved using two different BFRs: 250 and 350 mL/min, respectively, in 73% and 100% of the cases. Increasing the BFR by 40% is effective in increasing dialysis dose and phosphate reduction rate during high-flux HD. The future prospective studies are needed to evaluate the impact of increasing BFR on phosphate removal using the total amount of phosphate removed, and also evaluate the cardiovascular outcome of phosphate reduction and dialysis improvement.


[FULL TEXT] [PDF]*
Print this article  Email this article
    

  Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
   Citation Manager
  Access Statistics
   Reader Comments
   Email Alert *
   Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1462    
    Printed18    
    Emailed0    
    PDF Downloaded137    
    Comments [Add]    

Recommend this journal